Four-Group Decodable Semi-Orthogonal Algebraic Space-Time Block Codes

Dũng Ngọc Dào, Chintha Tellambura
ECE Department
University of Alberta
Edmonton, Alberta, Canada
{dndung, chintha}@ece.ualberta.ca

Chau Yuen, Tjeng Thiang Tjhung
Wireless Comms. Division
Institute for Infocomm Research
21 Heng Mui Keng Terrace, Singapore
{cyuen, tjhungtt}@i2r.a-star.edu.sg

Yong Liang Guan
School of EEE
Nanyang Technological University
Nanyang Avenue, Singapore
eylguan@ntu.edu.sg

Abstract—The rate-one semi-orthogonal algebraic space-time (SAST) codes is recently introduced. In this paper, we propose a new signal design method for SAST codes so that the transmitted symbols can be divided into four groups for maximum likelihood (ML) detection; we call this new design of SAST codes four-group decodable SAST (4Gp-SAST) codes. The decoding complexity of 4Gp-SAST codes is greatly reduced compared with that of the original SAST codes, where the ML decoding of the transmitted symbols is made into two groups. The exact pair-wise error probability of 4Gp-SAST codes is derived and it is used to optimize the signal designs. Simulation results show that 4Gp-SAST codes perform better than several low complexity space-time block codes such as orthogonal and quasi-orthogonal codes.

I. INTRODUCTION

Space-time block codes (STBC) have been extensively studied [1]. Among various STBC proposed so far, orthogonal STBC (OSTBC) have been successfully applied in the third generation wireless communication systems [2]–[4]. The key features leading to the wide application of OSTBC are their minimum complexity maximum likelihood (ML) detection and full diversity. On the other hand, OSTBC have low code rate when the number of transmit antennas is more than 2 [5]. The rate of one symbol per channel use (pcu) exists for 2 transmit antennas only. Yuen et al. [15] have tried to search for the high-rate STBC with low decoding complexity. They have found a code of rate 5/4 with full symbol-wise diversity [1] for 4 transmit antennas; this code allows the separation of transmitted symbols into two groups at the receiver.

Recently, the rate-one semi-orthogonal algebraic space-time (SAST) codes have been proposed in [10]. The SAST codes allow the separation of the transmitted symbols into 2 groups for ML detection. Furthermore, near capacity of multiple-input single-output (MISO) channels can be achieved by using SAST codes. Therefore, it is of interest to study other properties of SAST codes.

In this paper, we show that the transmitted symbols embedded in the SAST code matrix can be divided into four groups for ML detection. We thus call this code four-group decodable SAST (4Gp-SAST) codes. The exact pair-wise error probability (PEP) of 4Gp-SAST codes is derived. Based on the exact PEP, we optimize the signal rotation for the traditional constellations (such as quadrature amplitude modulation (QAM)) to obtain full diversity and the best performance. The 4Gp-SAST codes perform better than several existing low complexity codes such as OSTBC and QSTBC.

To provide a closer look on the new 4Gp-SAST codes, we compare their main parameters with several existing low decoding complexity STBC for 6 antennas in Table I, including OSTBC, ABBA-QSTBC [6], MDC-QSTBC [14] and 4Gp-QSTBC [16]. Clearly, the new 4Gp-SAST codes offer several advantages such as higher code rate, lower encoding/decoding delay, and low decoding complexity. Moreover, from simulation results, our new codes also yield significant SNR gains compared with the OSTBC, QSTBC and MDC-QSTBC.

II. SYSTEM MODEL AND PRELIMINARIES

We first set the common notations to be used throughout the paper. Superscripts T, *, and † denote matrix transpose, conjugate, and transpose conjugate, respectively. The identity and all-zero square matrices of proper size are denoted by I and O. The diagonal matrix with elements of vector x
on the main diagonal is denoted by $\text{diag}(x)$. $\|X\|_F$ stands for Frobenius norm of matrix X and \otimes denotes Kronecker product [17]. $\mathbb{E}[\cdot]$ denotes average. A mean-m and variance-σ^2 circularly complex Gaussian random variable is written by $\mathcal{CN}(m, \sigma^2)$. $\Re(X)$ and $\Im(X)$ denote the real and imaginary parts of X, respectively. Unless otherwise stated, all the vectors are column vectors and denoted by lowercase bold letters.

A. System Model

We consider data transmission over a quasi-static Rayleigh flat fading channel, i.e. the channel is fixed for the duration of a codeword, and it can vary from the duration of one codeword to another codeword. The transmitter and receiver are equipped with M transmit (transmit) and N receive (receive) antennas. The channel gain h_{ik} ($i = 1, 2, \ldots, M; k = 1, 2, \ldots, N$) between the (i,k)-th transmit-receive antenna pair is assumed to be $\mathcal{CN}(0,1)$. We assume no spatial correlation at either transmit or receive array, and the receiver, but not the transmitter, completely knows the channel gains.

The ST encoder parses data symbols into a $T \times M$ code matrix X of an ST code \mathcal{X} as follows:

$$X = \left[ct_i\right]_{i=1}^{T}$$

where ct_i is the symbol transmitted from antenna i at time t ($1 \leq t \leq T$). The average energy of the code matrices is constrained such that $\mathbb{E}[X] = \sum_{i=1}^{T} \sum_{k=1}^{M} \mathbb{E}[|ct_i|^2] = T$.

The received signals y_{ik} of the k-th antenna at time t can be arranged in a matrix Y of size $T \times N$. Thus, one can represent the transmit-receive signal relation as

$$Y = \sqrt{\rho}XH + Z$$

where $H = [h_{ik}]$, and $Z = [z_{ik}]$ of size $T \times N$, and z_{ik} are independently, identically distributed (i.i.d.) $\mathcal{CN}(0,1)$. The transmit power is scaled by ρ so that the average signal-to-noise ratio (SNR) at each receive antenna is ρ, independent of the number of transmit antennas. However, ρ is sometimes omitted for notational brevity.

The mapping of a block of K data symbols (s_1, s_2, \ldots, s_K) into a $T \times M$ code matrix can be represented in a general dispersion form [3], [18] as follows:

$$X = \sum_{k=1}^{K} (a_k A_k + b_k B_k)$$

where A_k and B_k, $(k = 1, 2, \ldots, K)$ are $T \times M$ complex-valued constant matrices; they are commonly called dispersion matrices. a_k and b_k are the real and imaginary parts of the symbol s_k.

In (3), there are totally $2K$ real variables a_i and b_i. We can replace variables a_i and b_i (and their dispersion matrices A_k and B_k) by the same symbolic variable c_l (and dispersion matrix C_l). Then (3) becomes

$$X = \sum_{l=1}^{L} c_l C_l.$$ \hspace{1cm} (4)

Denote the transmitted data vector $c = [c_1 \ c_2 \ \ldots \ c_L]^T$.

The ML decoding of STBC is to find the solution \hat{c} of the following metric:

$$\hat{c} = \arg \min_{c} \|Y - XH\|_F^2.$$ \hspace{1cm} (5)

B. Algebraic Constraints of QSTBC

In QSTBC we divide the L (real) transmitted symbols embedded in a code matrix into Γ independent groups, so that the ML detection of a transmitted code matrix can be decoupled into Γ sub-metrics; each metric involves the symbols of only one group [6]–[10], [15]. We provide a definition of STBC with such feature to unify the notation in this paper as follows.

Definition 1: A STBC is said to be Γ-group decodable if the ML decoding metric (5) can be decoupled into a linear sum of Γ independent submetrics, each submetric consists of the symbols from only one group. The Γ-group decodable STBC is denoted by ΓGp-STBC for short.

Note that from Definition 1, the real and imaginary parts of the same complex symbol can belong to different groups.

In the most general case, we assume that there are Γ groups; each group is denoted by Ω_i ($i = 1, 2, \ldots, \Gamma$) and has L_i symbols. Thus $L = \sum_{i=1}^{\Gamma} L_i$. Let Θ_i be the set of indexes of symbols in the group Ω_i.

Yuen et al. [15, Theorem 1] have shown a sufficient condition for a STBC to be multi-group decodable. In fact, this condition is also the necessary condition. We will state these results in the following theorem.

Theorem 1: The necessary and sufficient conditions for a STBC to be Γ-group decodable are

$$C_q^T C_q + C_p^T C_p = 0 \quad \forall p \in \Theta_i, \forall q \in \Theta_j, i \neq j.$$ \hspace{1cm} (6)

Theorem 1 covers [13, Theorem 9] (single-symbol decodable STBC) and can be proved similarly; details of proof are omitted for brevity.

III. Four-Group Decodable SAST Codes

A. Encoding

We first review the construction of SAST codes introduced in [10]. The SAST code matrix is constructed for $M = 2m$ transmit antennas using circulant blocks. Two data vectors $s_1 = [s_1 \ s_2 \ \ldots \ s_m]^T$ and $s_2 = [s_2 \ s_3 \ \ldots \ s_m \ s_1]^T$...
$[s_{m+1} \ s_{m+2} \ \ldots \ s_{2m}]^T$ are used to generate two circulant matrices [19]:

$$
C(s_1) = \begin{bmatrix}
s_1 & s_2 & \ldots & s_m \\
s_m & s_1 & \ldots & s_{m-1} \\
\vdots & \vdots & \ddots & \vdots \\
s_2 & s_3 & \ldots & s_1
\end{bmatrix}.
$$

$$
C(s_2) = \begin{bmatrix}
s_{m+1} & s_{m+2} & \ldots & s_{2m} \\
s_{2m} & s_{m+1} & \ldots & s_{2m-1} \\
\vdots & \vdots & \ddots & \vdots \\
s_{m+2} & s_{m+3} & \ldots & s_{m+1}
\end{bmatrix}.
$$

(7)

The SAST code matrix is constructed from as

$$
S = \begin{bmatrix}
C(s_1) & C(s_2) & -C^\dagger(s_2) & C^\dagger(s_1)
\end{bmatrix}.
$$

(8)

For example, the SAST code for 6 transmit antennas is

$$
S_6 = \begin{bmatrix}
u_1 & u_2 & u_3 & u_4 & u_5 & u_6 \\
u_2 & u_3 & u_4 & u_5 & u_6 & u_1 \\
u_3 & u_4 & u_5 & u_6 & u_1 & u_2 \\
u_4 & u_5 & u_6 & u_1 & u_2 & u_3 \\
u_5 & u_6 & u_1 & u_2 & u_3 & u_4 \\
u_6 & u_1 & u_2 & u_3 & u_4 & u_5
\end{bmatrix}.
$$

(9)

In order to use the general form of STBC (4) for SAST codes, we introduce a representation of circulant matrices using a matrix called forward shift permutation denoted by π [19]. The definition of an $m \times m$ matrix π is given below

$$
\pi = \begin{bmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 0 & \ldots & 0
\end{bmatrix}.
$$

(10)

The circulant matrices $C(s_1)$ and $C(s_2)$ can be represented as

$$
C(s_1) = \sum_{i=1}^{m} s_i \pi^{i-1}, \quad C(s_2) = \sum_{i=1}^{m} s_{m+i} \pi^{i-1}.
$$

(11)

The SAST code matrix follows

$$
S = \sum_{i=1}^{m} \left[\begin{array}{c}
\pi^{i-1} \\
0
\end{array} \right] + \begin{bmatrix}
0 & 0 \\
-\pi^{i-1} & 0
\end{bmatrix} + \begin{bmatrix}
0 & j\pi^{i-1} \\
j\pi^{i-1} & 0
\end{bmatrix} + \begin{bmatrix}
0 & j\pi^{i-1} \\
j\pi^{i-1} & 0
\end{bmatrix}.
$$

(12)

One can recognize that there are 4 groups of symbols: Group 1 with symbols a_i, group 2 with symbols b_i, group 3 with symbols a_{m+i}, group 4 with symbols b_{m+i} ($i = 1, 2, \ldots, m$). We can show that these four groups can be decoded separately using Theorem 1.

Theorem 2: By construction (8), SAST codes are four-group decodable.

Compared with 4Gp-QSTBC [16], 4Gp-SAST codes also have rate of one symbol per group. The main different of the two codes is their delay-optimality. While 4Gp-QSTBC is delay-optimal if the number of transmit antennas is a power of 2, SAST codes are delay-optimal for $2m$ transmit antennas.

Theorem 2 can be shown explicitly using Theorem 1. Due to the space limit, we omit the proof. However, we will derive a new ML decoder such that the decoding of transmitted symbols becomes the decoding of 4 orthogonal groups instead.

B. Decoder of 4Gp-SAST codes

Applying the general ML decoder in (5), the decoding of transmitted symbols of 4Gp-SAST codes becomes the decoding of 4 vectors: $\Re(s_1), \Im(s_1), \Re(s_2)$ and $\Im(s_2)$. However, this approach results in exponential decoding complexity. Therefore, we will derive an alternative decoder for 4Gp-SAST codes in order to provide more insights into the structure of the equivalent channel for 4Gp-SAST codes. Furthermore, the equivalent channel can be used to analyze the codes’ performance and to apply sphere decoding [20].

The derivation of the decoder for 4Gp-SAST codes requires two steps. The first step is to decouple the two data vectors s_1 and s_2. In the second step, the real and imaginary parts of vectors s_1 and s_2 will be separated. The first decoding step has been described in [10] and will be briefly reviewed in the following. We provide the details of the decoder with one receive antennas and generalization for multiple receive antennas can be easily developed.

We introduce another type of circulant matrix called left circulant, denoted by $C_L(x)$, where the ith row is obtained by circular shifts $(i-1)$ times to the left the row vector x.

$$
C_L(x) = \begin{bmatrix}
x_1 & x_2 & \ldots & x_m \\
x_2 & x_3 & \ldots & x_1 \\
\vdots & \vdots & \ddots & \vdots \\
x_m & x_1 & \ldots & x_{m-1}
\end{bmatrix}.
$$

(13)

Let us define a permutation Π on an arbitrary matrix X such that, the $(m-i+2)$th row is permuted with the ith row for $i = 2, 3, \ldots, \lceil \frac{m}{2} \rceil$, where $\lceil \cdot \rceil$ is ceiling function. One can verify that

$$
\Pi(C_L(x)) = C(x).
$$

(14)

This useful operator will be used for our next derivation.

Let $y = [y_1^T \ y_2^T]^T$, $y_1 = [y_1 \ y_2 \ \ldots \ y_m]^T$, $y_2 = [y_{m+1} \ y_{m+2} \ \ldots \ y_M]^T$, $h = [h_1^T \ h_2^T]^T$, $h_1 = [h_1 \ h_2 \ \ldots \ h_m]^T$, $h_2 = [h_{m+1} \ h_{m+2} \ \ldots \ h_{2m}]^T$, $z = [z_1^T \ z_2^T]^T$, $z_1 = [z_1 \ z_2 \ \ldots \ z_m]^T$, $z_2 = [z_{m+1} \ z_{m+2} \ \ldots \ z_{2m}]^T$.

We can write the transmit-receive signal relation as

$$
\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix} = \sqrt{\frac{\rho}{M}} \begin{bmatrix}
C(s_1) & C(s_2) & -C^\dagger(s_2) & C^\dagger(s_1)
\end{bmatrix} \begin{bmatrix}
h_1 \\
h_2
\end{bmatrix} + \begin{bmatrix}
z_1 \\
z_2
\end{bmatrix}.
$$

(15)
Applying permutation Π in (14) for the column matrix y_1, we obtain [10]:

$$
\begin{bmatrix}
\hat{y}_1 \\
\hat{y}_2
\end{bmatrix} = \sqrt{\frac{\rho}{M}} \begin{bmatrix}
H_1 & H_2 \\
H_2^H & -H_1^H
\end{bmatrix} \begin{bmatrix}
\hat{s}_1 \\
\hat{s}_2
\end{bmatrix} + \begin{bmatrix}
\hat{z}_1 \\
\hat{z}_2
\end{bmatrix}.
$$

(16)

where $H_1 = C(h_1^T)$, $H_2 = C(h_2^T)$, $\hat{z}_1 = \Pi(z_1)$, $\hat{z}_2 = z_2^*$. The elements of \hat{z}_1 and \hat{z}_2 have the same statistics, $CN(0, 1)$, as elements of z_1 and z_2.

We now multiply $\hat{\mathcal{H}}^\dagger$ to both sides of (16). Let $\hat{\mathcal{H}} = H_1^\dagger + H_2^\dagger$, we get

$$
\begin{bmatrix}
\hat{y}_1 \\
\hat{y}_2
\end{bmatrix} = \hat{\mathcal{H}}^\dagger \begin{bmatrix}
\hat{y}_1 \\
\hat{y}_2
\end{bmatrix} = \sqrt{\frac{\rho}{M}} \begin{bmatrix}
\hat{\mathcal{H}} & 0_m \\
0_m & \hat{\mathcal{H}}
\end{bmatrix} \begin{bmatrix}
\hat{s}_1 \\
\hat{s}_2
\end{bmatrix} + \hat{\mathcal{H}}^\dagger \begin{bmatrix}
\hat{z}_1 \\
\hat{z}_2
\end{bmatrix}.
$$

(17)

The covariance matrix of the additive noise vector \hat{z} is

$$
E[\hat{z}\hat{z}^H] = \begin{bmatrix}
\hat{\mathcal{H}} & 0_m \\
0_m & \hat{\mathcal{H}}
\end{bmatrix}.
$$

(18)

Therefore, noise vectors \hat{z}_1 and \hat{z}_2 are uncorrelated and have the same covariance matrix $\hat{\mathcal{H}}$. Thus s_1 and s_2 can be decoded separately using $\hat{y}_i = \hat{\mathcal{H}}s_i + \hat{z}_i, i = 1, 2$. The noise vectors \hat{z}_1 and \hat{z}_s can be whitened by the same whitening matrix $\hat{\mathcal{H}}^{-1/2}$.

The equivalent equations for transmit-receive signals are

$$
\hat{\mathcal{H}}^{-1/2} \hat{y}_i = \sqrt{\frac{\rho}{M}} \hat{\mathcal{H}}^{-1/2} s_i + \hat{\mathcal{H}}^{-1/2} \hat{z}_i, \quad i = 1, 2.
$$

(19)

At this point, the decoding of SAST codes becomes the detection of 2 group of complex symbols $s_i (i = 1, 2)$. Our next step is to separate the real and imaginary parts of vectors s_i by exploiting the properties of $\hat{\mathcal{H}}$.

Recall that $\hat{\mathcal{H}} = H_1^\dagger H_1 + H_2^\dagger H_2$, and both H_1 and H_2 are circulant. Hence, $\hat{\mathcal{H}}$ is also circulant [19]. Let $\Lambda = [\lambda_{1,1} \lambda_{1,2} \ldots \lambda_{1,m}]$ be the m eigenvalues of $H_1 (i = 1, 2)$. We can diagonalize H_1 by Fourier transform matrix as $H_1 = F^\dagger \Lambda_1 F$. Thus

$$
\hat{\mathcal{H}} = F^\dagger (\Lambda_1^1 \Lambda_1^2) F.
$$

(20)

Let $\Lambda_1^1 \Lambda_1^2 = \Lambda$, then Λ has non-negative entries in the main diagonal and

$$
\Lambda^{1/2} = \Lambda_1 \Lambda_2, \\
\Lambda^{-1/2} = \Lambda_1^{-1} \Lambda_2.
$$

(21a)

(21b)

We assume that s_i is pre-multiplied (or rotated) by a matrix F. Substituting s_i by $F^\dagger s_i$ and multiplying both sides of (19) with F, one obtains

$$
\Lambda^{-1/2} F \hat{y}_i = \sqrt{\frac{\rho}{M}} F^\dagger \Lambda^{1/2} F s_i + \Lambda^{-1/2} F \hat{z}_i,
$$

$$
= \sqrt{\frac{\rho}{M}} \Lambda^{1/2} s_i + \Lambda^{-1/2} F \hat{z}_i.
$$

(22)

Since we can choose $\Lambda^{1/2}$ such that it has non-negative elements (in the main diagonal), the real and imaginary parts of s_i now can be separated for detection.

$$
\Lambda^{-1/2} \Re(F \hat{y}_i) = \sqrt{\frac{\rho}{M}} \Lambda^{1/2} \Re(s_i) + \Re(\hat{z}_i), \\
\Lambda^{-1/2} \Im(F \hat{y}_i) = \sqrt{\frac{\rho}{M}} \Lambda^{1/2} \Im(s_i) + \Im(\hat{z}_i).
$$

(23a)

(23b)

We finish deriving the general decoder for 4Gp-SAST codes. Using (23), one can use a sphere decoder to detect the transmitted symbols. The equivalent channel of 4Gp-SAST codes is $\Lambda^{1/2}$.

C. Performance Analysis

Note that the eigenvalues of the $m \times m$ matrices H_1 and H_2 can be found easily using unnormalized Fourier transformation of the channel vectors h_1 and h_2 [19]. Therefore, the eigenvalues of H_1 and H_2 have distribution $\sim CN(0, m)$.

We can introduce a real orthogonal transformation R to the data vectors $\Re(s_i)$ and $\Im(s_i)$ $(i = 1, 2)$ to improve the performance of 4Gp-SAST codes. Thus the actual signal rotation of 4Gp-SAST codes is $F^\dagger R$. Remember that the Fourier transform matrix F is used to make the equivalent channel of 4Gp-SAST codes real.

Since the PEP of vectors $\Re(s_i)$ and $\Im(s_i)$ $(i = 1, 2)$ are the same, we just calculate the PEP of the vector $\Re(s_1)$. Let $\delta = \Re(s_1) [a_1 \ a_2 \ldots \ a_m]^T$.

The PEP of the pair δ and δ can be expressed by the Gaussian tail function as [21]

$$
P(\delta \rightarrow d | \hat{\mathcal{H}}) = Q\left(\sqrt{\frac{\rho |\Lambda^{1/2} R \delta|^2}{8}} \right),
$$

(24)

where $N_0 = 1/2$ is the variance of the elements of the white noise vector $\Re(\hat{z}_1)$ in (23a), $\delta = d - \hat{d}$. Substituting $\Lambda = \Lambda_1^1 \Lambda_1^2 + \Lambda_2^1 \Lambda_2^2$, one has

$$
P(\delta \rightarrow d | \hat{\mathcal{H}}) = Q\left(\sqrt{\frac{\rho |\sum_{i=1}^{m} \sum_{j=1}^{m} \beta_i^2 |\lambda_{i,j}|^2 R \delta|^2}{16}} \right),
$$

(25)

where $\beta = R \delta$.

We now use the Craig’s formula [22] to derive the conditional PEP in (24).

$$
P(\delta \rightarrow d | \hat{\mathcal{H}}) = Q\left(\sqrt{\frac{\rho |\sum_{i=1}^{m} \sum_{j=1}^{m} \beta_i^2 |\lambda_{i,j}|^2 R \delta|^2}{16}} \right),
$$

(26)
We can apply a method based on the moment generating function (MGF) [23], [24] to obtain the unconditional PEP in the following:

\[
P(\hat{d} \to d) = \frac{1}{\pi} \int_0^{\pi/2} \left[\prod_{i=1}^m \left(1 + \frac{\beta_i^2}{8 \sin^2 \alpha} \right) \right]^{-2} d\alpha.
\]

(27)

Since there are four vectors to be decoded in each code matrix, the codeword PEP is therefore equal to 4 times the PEP given in (27).

Assume that \(\beta_i \neq 0 \forall i = 1, 2, \ldots, m\). One can find the asymptotic PEP of 4Gp-SAST codes at high SNR as follows.

\[
P(\hat{d} \to d) \approx \left(\frac{2^m \rho^{-2m}}{\pi} \int_0^{\pi/2} (\sin \alpha)^{16} d\alpha \right) \prod_{i=1}^m \beta_i^{-4} = \frac{2^{3M} M^{-M}}{2^{17}} \frac{16^M}{8!} \prod_{i=1}^m \beta_i^{-4}.
\]

(28)

The asymptotic bound in (28) shows an important property of the 4Gp-SAST codes at high SNR: The PEP is heavily dependent on the product distance \(\prod_{i=1}^m \beta_i\) (see, e.g. [25]). The exponent of SNR in (28) is \(\frac{M}{2}\). This indicates that the maximum diversity order of 4Gp-QSTBC is 8 and it is achievable if the product distance is non-zero for all possible data vectors. Furthermore, at high SNR, the asymptotic bound becomes very tight to the exact PEP. Therefore, the larger the product distance, the lower FER can be obtained. Thus, we can optimize the rotation by \(R\) so that the minimum product distance

\[
d_{p,\text{min}} = \min_{\forall d, \hat{d}} \min_{k=1}^{4} |\beta_k|
\]

(29)

is non-zero and maximized.

For QAM signals, the symbols \(a_i\) and \(b_i\) are in the set \{±1, ±3, ±5, \ldots\}. The best known rotations for QAM in terms of maximizing the minimum product distance are provided in [26], [27]; they are denoted by \(R_{BOV}\).

In [26], [27], the rotated lattice points are generated by \(x = d R_{BOV}\), where \(d \in \mathbb{Z}^n\) and \(R_{BOV}\) is of size \(m \times m\). In this representation, \(x\) and \(d\) are row vectors, while we use column vector notation in our paper. Thus the rotation matrices \(R_{BOV}\) given in [26], [27] will be transposed. For the 3-dimensional lattices, the rotation matrix is given below.

\[
R_{BOV,3} = \begin{bmatrix}
-0.32798528 & -0.73697623 & -0.59100905 \\
-0.59100905 & -0.32798528 & 0.73697623 \\
-0.73697623 & 0.59100905 & -0.32798528
\end{bmatrix}.
\]

(30)

Note that in the construction of 4Gp-SAST codes, the data vectors \(s_i\) (\(i = 1, 2\)) with proper size are rotated to generate the vectors \(u_i\) as \(u_i = F^\dagger R s_i\).

IV. SIMULATION RESULTS

The performance of 4Gp-QSTBC and 4Gp-SAST codes will be compared with OSTBC [5], MDC-QSTBC [14], QSTBC [6], [28], 4Gp-QSTBC [16], DAST [11], and SAST codes [10].

A. Performance of 4Gp-SAST codes for 6 antennas

Performance of 4Gp-SAST code for 6 antennas is compared with rate-2/3 OSTBC [5], and rate-one 4Gp-QSTBC and SAST codes in Fig. 1. In this simulation, the best 8QAM in terms of Euclidean distance [28] is selected for OSTBC, while 4QAM is for the other codes. Thus the bit rate of all the codes is 2 bits pcu. From Fig. 1, the 4Gp-SAST code perform significantly better than OSTBC (0.8 dB gain) and slightly worst than 4Gp-QSTBC and SAST codes. These results reflect the complexity-performance tradeoff (see also Table I).

B. Performance of 4Gp-SAST codes for 8 antennas

We compare the performance of 4Gp-SAST codes with ABBA-QSTBC [6], [28] and MDC-QSTBC [14] for 8 antennas and spectral efficiency of 3 bits pcu in Fig. 2. To obtain 3 bits pcu, 16QAM is used with ABBA-QSTBC and MDC-QSTBC, while 8QAM is combined with 4Gp-SAST codes. For 8 antennas, the decoding of 4Gp-SAST codes require joint detection of 4 real symbols, the same complexity of ABBA-QSTBC and higher than that of MDC-QSTBC. 4Gp-SAST codes perform much better than the two codes, due to higher code rate.

The performance of 4Gp-SAST codes is also compared with DAST codes [11] and 4Gp-QSTBC for the data rate of 4 bits pcu in Fig. 2. The decoding complexity of 4Gp-SAST codes for 8 antennas is the same as that of 4Gp-QSTBC (joint detection of 4 real symbols) and the two codes perform similarly. However, the decoding complexity of 4Gp-SAST is much lower than that of DAST (joint detection of 16 real symbols), but the former is superior to the latter. Nevertheless, SAST codes still perform better than 4Gp-SAST codes at the cost of higher complexity.

V. CONCLUSIONS

We have presented 4Gp-SAST codes, a new class of four-group decodable STBC derived from SAST codes. The decoder of 4Gp-SAST codes is derived, enabling the derivation of the exact codeword pair-wise error probability. Therefore, the performance of 4Gp-SAST is optimized based on the exact PEP. The new codes are delay optimal for an even number of transmit antennas. This feature distinguishes the 4Gp-SAST codes from the previously known 4Gp-QSTBC, where the code length is a power of 2. Our 4Gp-SAST codes also perform better than several low complexity codes such as OSTBC, ABBA-QSTBC, MDC-QSTBC. The equivalent channel of 4Gp-SAST codes is provided in a simple diagonal form. Therefore, when certain kinds of channel state information are available at the transmitter, space-time precoder can be derived to further improve the performance of 4Gp-SAST codes. This problem can be a topic for future research.

REFERENCES

Fig. 1. Comparing performances of 4Gp-SAST codes with OSTBC and SAST codes, 6 transmit and 1 receive antennas, 2 bits pcu.

Fig. 2. Comparing performances of 4Gp-SAST codes with ABBB QSTBC, MDC-QSTBC, 4Gp-QSTBC, DAST and SAST codes, 8 transmit and 1 receive antennas, 2 bits pcu.

